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By implementing the exact density matrix for the rotating anisotropic harmonic trap, we derive a class of
very fast and accurate fourth-order algorithms for evolving the Gross-Pitaevskii equation in imaginary time.
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tional second-order algorithms. Our use of time-dependent factorization schemes provides a systematic way of
devising algorithms for solving this type of nonlinear equations.
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I. INTRODUCTION

The dynamics of a fast rotating Bose-Einstein condensate
�BEC� has been studied extensively in terms of the Gross-
Pitaevskii �GP� equation �1,2�. By evolving the GP equation
in imaginary time, it is easy to determine the ground state
properties of the condensate, such as the formation of vortex-
arrays and giant vortices �2,3�. It has been known for some
time that the first-order pseudospectral, split-operator method
�4� is a very fast way of solving the nonlinear Schrödinger
equation. However, first or second-order split operator �SO�
methods �5,6� and Crank-Nickolson �CN� algorithms with
�7� or without �8� splitting ignore the time dependence of the
nonlinear potential and converge linearly or quadratically
only at very small time steps. Bandaruk and Shen �9� have
applied higher order decomposition schemes with negative
coefficients to solve the real time nonlinear Schrödinger
equation. Due to the difficulty of estimating the nonlinear
potential at intermediate time, they have not demonstrated
that their higher order algorithms actually converge with ac-
curacy beyond second order. In any case, their negative co-
efficient algorithms cannot be used for imaginary time evo-
lution because negative time steps will result in an
unbounded diffusion kernel �10–13�.

In this work, we derive a class of very accurate fourth
order factorization algorithm for solving the GP equation
in imaginary time. These algorithms are made possible by
the confluence of three key ideas: �1� The density matrix for
a rotating anisotropic harmonic oscillator can be solved
exactly. �2� The time dependence of the nonlinear potential
can be systematically accounted for in factorization
algorithms. �3� Forward, all positive time step algorithms
�14–19� are now available for solving imaginary time
evolution equations.

In the next section, we show how the density matrix of
the harmonic oscillator can be exactly implemented as an
algorithm. This obviates the need to expand in harmonic
eigenstates �6,20�. In Sec. III, by exact diagonalization,
we generalize the result to the case of a rotating anisotropic

harmonic trap. In Sec. IV, we describe the time-dependent
form of the fourth order forward algorithm for solving
the GP equation. In Sec. V, we compare the convergence
of various algorithms. We summarize our conclusions in
Sec. VI.

II. EXACT ALGORITHM FOR THE HARMONIC
OSCILLATOR

Consider the one-dimensional �1D� harmonic oscillator
Hamiltonian operator given by

H = T + V = 1
2 p2 + 1

2�2x2. �2.1�

Its imaginary time propagator �or density matrix� can be ex-
actly decomposed as

e−��T+V� = e−�CVVe−�CTTe−�CVV, �2.2�

where CV and CT are functions of � to be determined. To
show this, we simply compare the matrix elements on both
sides. For the right hand side �rhs�, we have �ignoring nor-
malization factors�

�x��e−�CVVe−�CTTe−�CVV�x�

= e−�CV�2x�2/2e−�x� − x�2/�2�CT�e−�CV�2x2/2. �2.3�

For the left hand side �lhs� of �2.2�, the exact density matrix
element is known �21�

�x��e−��T+V��x�

= exp�−
�

2 sinh����
��x�2 + x2�cosh���� − 2x�x�	

= exp
−
�

2 sinh����

���x�2 + x2��cosh���� − 1� + �x� − x�2� , �2.4�

where we have expressed −2x�x= �x�−x�2−x�2−x2. Compar-

PHYSICAL REVIEW E 72, 036705 �2005�

1539-3755/2005/72�3�/036705�9�/$23.00 ©2005 The American Physical Society036705-1

http://dx.doi.org/10.1103/PhysRevE.72.036705


ing �2.3� to �2.4� allows us to identify the coefficient func-
tions as

CV =
cosh���� − 1

�� sinh����
and CT =

sinh����
��

. �2.5�

In the limit of �→0, we have

CV = 1
2 − 1

24�2�2 + 1
240�4�4 + ¯ , �2.6�

CT = 1 + 1
6�2�2 + 1

120�4�4 + ¯ . �2.7�

If we keep only the first term, we have a second-order algo-
rithm. Keeping the first two terms gives a fourth-order
algorithm, keeping the first three terms gives a sixth-order
algorithm, etc.

The exact factorization �2.2� is possible for the harmonic
oscillator because its Hamiltonian is quadratic and higher
order commutators are either zero or simply proportional to
T or V. The harmonic oscillator is characterized by two key
commutators,

†V,�T,V�‡ = 2�2V , �2.8�

†T,�V,T�‡ = 2�2T . �2.9�

Because of these two equalities, all higher order commuta-
tors can be subsumed back to the original operators T and V.
To see how this exact decomposition comes about, let us
begin with the simple second-order decomposition

e−�1/2��Ve−�Te−�1/2��V

= exp�− ��T + V� + 1
24�3�†V,�T,V�‡

− 2†T,�V,T�‡� + O��5�� ,

=exp�− ��T + V� + 1
24�3�2�2V − 4�2T� + O��5�� .

�2.10�

Since the error terms are proportional to the original opera-
tors, they can be symmetrically moved back to the lhs to
yield,

e−��1/2−�1/24��2�2�Ve−��1+�1/6��2�2�Te−��1/2−�1/24��2�2�V

= e−��T+V�+O��5�. �2.11�

The decomposition of the lhs is then correct to the fourth
order. The coefficients agree with the expansion �2.6� and
�2.7�. This example makes it clear that the exact expansion
only depends on the abstract commutator relations �2.8� and
�2.9�, and is independent of the specific representation of the
1D harmonic oscillator. Also, if we exchange the operators
T↔V, the coefficients are unchanged. Thus we can also fac-
torize exactly via

e−��T+V� = e−�CVTe−�CTVe−�CVT. �2.12�

For real time propagation, we only need to set �= it to get
the corresponding coefficients,

CV =
1 − cos��t�
�t sin��t�

and CT =
sin��t�

�t
. �2.13�

For either real or imaginary time evolution, one iterates
the discretized wave function forward in time via

���� + ���� = e−���T+V������� . �2.14�

If the exact density matrix �2.4� were used directly in
coordinate space, that would incur a slow, N�N matrix
multiplication of the Gaussian kernel e−1/2�CT�x�− x�2

. The
advantage of the factorized form is that this matrix multipli-
cation can be avoided by going to k space via fast Fourier
transform �FFT� and multiplying the k-space wave function
point-by-point by e−�CT�1/2�k2

. This is then an order N ln2 N
operation, much faster than the N�N coordinate space
matrix multiplication.

III. EXACT ALGORITHM FOR A ROTATING
ANISOTROPIC HARMONIC TRAP

Consider now the case of an rotating anisotropic harmonic
potential with Hamiltonian

H = 1
2 �px

2 + py
2� + 1

2 �̃x
2x2 + 1

2 �̃y
2y2 − �̃�xpy − ypx� . �3.1�

This is a well-studied problem in nuclear physics �22�. Its
diagonalization is greatly simplified �23� if we characterize
the anisotropy via the deformation parameter �,

�̃x
2 = �1 + ���0

2, �̃y
2 = �1 − ���0

2, �3.2�

measure lengths in units of the oscillator length l=1/��0,

and express H and �̃ in units of �0. The resulting dimen-
sionless Hamiltonian is then

H = 1
2 �px

2 + py
2� + 1

2 �1 + ��x2 + 1
2 �1 − ��y2 − ��xpy − ypx� ,

�3.3�

where �=�̃ /�0. To diagonalize this Hamiltonian, we intro-
duce two new sets of canonical variables

Q1 = 	1�cx − spy�, P1 =
1

	1
�cpx + sy� , �3.4�

Q2 = 	2�cy − spx�, P2 =
1

	2
�cpy + sx� , �3.5�

where 	i are normalization constants, and c=cos�
�,
s=sin�
�. One can check that the canonical commutator re-
lations are indeed satisfied

�Qi,Pj� = i�ij . �3.6�

In terms of �Qi , Pi�, because of the way we have parameter-
ized the anisotropy and expressed everything in terms of �0,
the coefficients of both P2Q1 and P1Q2 can be made to van-
ish with a single condition

tan�2
� =
2�

�
. �3.7�

Using 	i to normalize the Pi
2 terms with unit coefficient, the

resulting Hamiltonian can be written as
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H = T1 + V1 + T2 + V2 = 1
2 P1

2 + 1
2�1

2Q1
2 + 1

2 P2
2 + 1

2�2
2Q2

2,

�3.8�

where

	1
−2 = 1 −

�

2
+

1

2
��2 + 4�2,

	2
−2 = 1 +

�

2
−

1

2
��2 + 4�2, �3.9�

with

�1
2 = 1 + �2 + ��2 + 4�2,

�2
2 = 1 + �2 − ��2 + 4�2. �3.10�

Also, from �3.7�, we have

2s2 = 1 −
�

��2 + 4�2
, �3.11�

2c2 = 1 +
�

��2 + 4�2
.

At �=0, the phase angle 
=0. As � increases, the phase
angle approaches 45° asymptotically. Thus s and c in �3.11�
are both positive. However, as � increases, �2

2 crosses zero
and becomes negative at �=�1−�. At this critical rotation
rate, the Coriolis force overcomes the weaker harmonic po-
tential in the y direction and the anisotropic harmonic oscil-
lator is unstable. �2

2 emerges positive again when 	2
−2 crosses

zero and turn negative at �2=1+�. Thus �2
2 is negative over

the interval 1−���2�1+�. This is an instability of the
rotating harmonic oscillator, not necessary that of the Gross-
Pitaevskii equation. We will come back to this point in
Sec. VI. Note also that for �=0, the algorithm is stable up to
�=1.

Equation �3.8� consists of two independent harmonic os-
cillator with different frequency. The two exact algorithms
must be applied in sequence. However, since T1 and V2 only
depend on px and y, they should be placed next to each other
so that both can be evaluated in the same mixed representa-
tion described below. Similarly, T2 and V1 only depend on x
and py. We therefore use the following factorization for each
algorithm:

e−��T1+V1� = e−�CV�1�T1e−�CT�1�V1e−�CV�1�T1, �3.12�

e−��T2+V2� = e−�CV�2�V2e−�CT�2�T2e−�CV�2�V2, �3.13�

and interlaced them as follows:

e−��T1+V1+T2+V2�

= e−�CV�1�T1−�CV�2�V2e−�CT�1�V1−�CT�2�T2e−�CV�1�T1−�CV�2�V2.

�3.14�

Here we use the shorthand notations CV�1�=CV��1�,
CT�2�=CT��2�, etc. To implement �3.14�, let

��x,y� =
1

�2�
� dpx��px,y�eipxx, �3.15�

��px,y� =
1

�2�
� dx ��x,y�e−ipxx, �3.16�

and

��x,py� =
1

�2�
� dy ��x,y�e−ipyy ,

=
1

2�
� dy dpx��px,y�eipxx−ipyy . �3.17�

The operators T1 and V2 are diagonal in the representation
��px ,y� and T2 and V1 are diagonal in the representation
��x , py�. In practice, ��x ,y� is discretized as an N�N com-
plex array and its Fourier transform is computed using the
discretized FFT. Thus the exact algorithm consists of four
steps:

�1� Compute the forward N−1D transform ��px ,y� from
��x ,y� and multiply ��px ,y� grid point by grid point by
e−�CV�1�T1−�CV�2�V2, where T1 and V2 are now understood to be
functions of px and y.

�2� Compute the two-dimensional �2D� transform
��x , py� from the updated ��px ,y� and multiply ��x , py� by
e−�CT�1�V1−�CT�2�T2, where V1 and T2 are now functions of x
and py.

�3� Compute the inverse 2D transform from the updated
��x , py� back to ��px ,y� and multiply ��px ,y� by
e−�CV�1�T1−�CV�2�V2.

�4� Compute the backward N-1D transform from the up-
dated ��px ,y� back to ��x ,y�.

Thus the algorithm can be implemented with only
three 2D-FFT. �One 2D transform=2N 1D transforms. �
This is only one 2D FFT more than solving the nonrotational
case.

IV. SOLVING THE GROSS-PITAEVSKII EQUATION

Denoting now the entire rotating trap Hamiltonian �3.8� as
the operator

T = T1 + V1 + T2 + V2, �4.1�

the corresponding 2D Gross-Pitaevskii equation is

�T + g���2���x,y� = ��x,y� . �4.2�

The condensate ground state can be projected out by imagi-
nary time evolution

�0 � lim
�→�

���� = lim
�→�

e−��T+V����+���0� . �4.3�

The chemical potential  is determined by preserving the
wave function’s normalization to unity. This will be taken for
granted and this term will be ignore in the following discus-
sion. Since ���� is time dependent, we have explicitly indi-
cated that the Gross-Pitaevskii potential
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V��� = g������2, �4.4�

is also time dependent.
In general, to solve �4.3� by factorization algorithms, one

must apply rules of time-dependent factorization �16,24�:
the time-dependent potential must be evaluated at an inter-
mediate time equal to the sum of time steps of all the T
operators to its right. For example, the first-order algorithm
1A is

����� = e−��Te−��V�0���0� �4.5�

and the first-order algorithm 1B is

����� = e−��V����e−��T��0� . �4.6�

While algorithm 1A is straightforward, 1B requires that the
potential be determined from the wave function to be com-
puted. This self-consistency condition can be solved by itera-
tive methods described below.

In contrast to real time propagation, the wave function in
imaginary time converges quickly to an approximate ground
state depending on �� and produces a ����� that differs
from ��0� only by a normalization constant. Thus after some
initial iterations, the normalized g�������2 is independent of
� and can be replaced by g���0��2. This replacement can be
justified only at small �� when the approximate wave func-
tion is close to the exact ground state and is unchanging in
time. �For real time propagation, the wave function is always
changing with time, and one cannot justify this replacement
even at small �t.� At larger ��, the approximate ground state
may not be a discrete bound state and the algorithm may fail
catastrophically. Thus if one approximates g�������2 by
g���0��2 in �4.6�, then the algorithm is still first order, but
only at very small ��. We shall refer to this version of the
algorithm as 1B0.

We define the second-order algorithm 2A as

����� = e−�1/2���V����e−��Te−�1/2���V�0���0� �4.7�

and algorithm 2B as

����� = e−�1/2���Te−��V���/2�e−�1/2���T��0� . �4.8�

Similarly, one can replace g�������2 by g���0��2 in algorithm
2A without affecting its quadratic convergence at very small
��. We shall refer to this version of the algorithm as 2A0.
Algorithm 2B requires two executions of the exact algorithm
�3.14� for similar convergence, which is less efficient. We
therefore did not implement algorithm 2B.

Figure 1 shows the convergence of algorithm 1A and 1B0
for the chemical potential . Both are very linear at small
��. The calculation is done for �=0.5, �=0.5, and g=50.
This choice corresponds to sizable anisotropy, rotation,
coupling strength and not close to any particular limit.
The calculation uses 642 grid points over a 142 harmonic
length square centered on the origin. Changing the grid
size to 1282 only changes the stable results in the fifth or
sixth decimal place. The ground state wave function is nearly
converged by �=2. The chemical potential shown is calcu-
lated at �=10. Note that the linear convergence line for 1B0
fails abruptly at ���0.15. Since algorithm 2A0 is just
running algorithm 1A first followed by 1B0 at half the time-

step size, the convergence failure of 1B0 accounts for the
failure of algorithm 2A0 near ���0.3. Both algorithm 1A
and 1B0 require an exceedingly small ����0.001� to pro-
duce an accurate value of . Even algorithm 2A0 requires
�� to be �0.05.

V. SELF-CONSISTENT ITERATIONS

To see the full effect of time-dependent factorization, we
must implement 1B and 2A in the form �4.6� and �4.7� with
self-consistent iterations to determined the GP potential. The
required consistency equation is of the form

� =
1
�Z

e−�1/2�b���2
 , �5.1�

where b=c��g for some coefficient c ,
 is the unnormalized
intermediate wave function prior to the evaluation of the
potential term, and Z is the constant that normalizes �. This
is needed because we are solving for the GP potential, which
requires a normalized wave function. Since only the square
of the modulus is needed, we solve �5.1� as

x =
1

Z
e−bxa �5.2�

where x= ���r��2, a= �
�r��2 and

Z =� e−bx�r�a�r�dr � �
i

e−bxiai��x�2. �5.3�

It is helpful to view these equations in the discrete forms in
which they are actually solved. When necessary, we will de-
note array elements explicitly as xi= ���ri��2, etc.

FIG. 1. Comparing the convergence of first- and second-order
algorithms in computing the chemical potential of the Gross-
Pitaevskii equation in a rotating anisotropic trap. The lines are
fitted curves to algorithm 1A, 1B0, and 2A0 to demonstrate the
order of convergence of each algorithm. The instability of data
points in algorithms 1B0 and 2A0 are removed by the inclusion of
one self-consistent W-function iteration as indicated by 1BW and
2AW.
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A naive way of solving �5.2� is just to iterate

xn+1 = F�xn� =
1

Z�xn�
e−bxna . �5.4�

Starting with x0=0, the first iteration would produces the
normalized ã=a /Z, which is a reasonable starting guess. De-
noting xn=x*+�n, where x* is the exact solution, then

�n+1 = F��x*��n + O��n
2�

= − bx*
„1 − O�1/N�…�n + ¯

� − �c��gx*��n. �5.5�

The O�1/N� term neglected above is from differentiating
1/Z with respect to xi�=e−b�xn�iai /� j=1

N e−b�xn�jaj�, where N is
the total number of array elements. It is therefore an excel-
lent approximation to regard Z as a constant when differen-
tiating with respect to individual array elements. The error
propagation �5.5� explains why this naive iteration is unde-
sirable; it will diverge abruptly at large �� such that
�c��gx*��1.

The self-consistency equation can be solved by better
methods, such as Newton’s or Halley’s iterations. However,
at large ��, the normalized ã is not a good enough starting
point. Fortunately, �5.2� has the exact solution

x =
1

b
W
ba

Z
 �5.6�

where W�y� is the Lambert W function �25�

WeW = y �5.7�

with series expansion

W�y� = y − y2 + 3
2 y3 − 8

3 y4 + O�y5� . �5.8�

The series expansion �5.8� is not useful for our purpose since
its radius of convergence is only 1/e. A better choice is the
following uniform approximation by Winitzki �26�:

W�y� � ln�1 + y��1 −
ln�1 + ln�1 + y��

2 + ln�1 + x� 	 , �5.9�

which has a maximum relative error of 2% �at x�2� in
�0,��.

The normalization constant Z can in principle be deter-
mined from

b =� W
ba

Z
dr , �5.10�

but this integral equation is time consuming to solve when
W�y� itself has to be computed numerically. A more work-
able scheme is to compute Z via �5.3� from xn, and compute
xn+1 via �5.6�. The use of �5.6� will guarantee convergence at
all b and ��, provided that one can compute W�y� in a
simple way. Thus we use the normalized ã as the starting
value, compute Z via �5.3�, solve for x via �5.6� and normal-
ize it to obtain an approximate GP potential at all ��. We
find that this one iteration is sufficient to remove all instabil-
ity in algorithms 1A and 1B; further Newton-Raphson itera-

tions produce marginal improvments not worth the additional
effort.

Figure 1 shows the convergence of algorithms 1B and 2A
when the self-consistency condition is approximately satis-
fied by our one W-function iteration. The results are denoted
as 1BW and 2AW. The instability in 1B0 and 2A0 no longer
appears. The convergence of both are linear and quadratic
out to large values of ��.

For first- and second-order algorithms, self-consistent it-
erations are not needed because �� has to be very small in
order for these algorithms to produce results close to the
exact one. If �� is small, then one may as well use 1B0
and 2A0 without wasting time on self-consistent iterations.
Self-consistency is a concern only when one is interested
in enlarging the step-size convergence of higher order
algorithms.

VI. FORWARD FOURTH-ORDER ALGORITHMS

It is well known from studies of symplectic integrators
that factorizations of the form �4.5�–�4.8� can be generalized
to higher order in the form �27–34�

e−���T+V� = �
i

e−ai��Te−bi��V, �6.1�

with coefficients �ai ,bi� determined by the required order of
accuracy. However, as first proved by Sheng �35� and made
explicit by Suzuki �36�, beyond second order, any factoriza-
tion of the form �6.1� must contain some negative coeffi-
cients in the set �ai ,bi�. Goldman and Kaper �37� later
proved that any factorization of the form �6.1� must contain
at least one negative coefficient for both operators. Since a
negative time step for the kinetic energy operator will result
in an unbound and unnormalizable wave function, no such
factorization scheme can be used to evolve the imaginary
time Schrödinger equation, including the Gross-Pitaevskii
equation. To go beyond second order, one must use forward
factorization schemes with only positive factorization coeffi-
cients �14–16�. These forward algorithms are currently the
only fourth-order algorithms possible for solving time-
irreversible equations with a diffusion kernel �10,11� and
have been applied successfully in solving the imaginary
time Schrödinger equation �12,13�. Omelyan, Mryglod, and
Folk �18,19� have compiled an extensive list of fourth and
higher order symplectic algorithms. However, their sixth-
and eighth-order algorithms contain negative time steps
and are not forward algorithms. Recently, one of us has
proved �38� that while sixth-order forward algorithms are
possible, they require an additional commutator currently not
implementable. Thus forward algorithms are very unique.
Here, we will show that they also yield highly accurate
fourth-order algorithms for solving the Gross-Pitaevskii
equation.

The problem we seek to solve is the ground state of

H = Hx + Hy + V�x,y,�� �6.2�

where V�x ,y ,�� is the GP potential �4.4� and

Hx = 1
2 py

2 + 1
2 �1 + ��x2 − �xpy , �6.3�
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Hy = 1
2 px

2 + 1
2 �1 − ��y2 + �ypx. �6.4�

The Hamiltonian fundamentally has three operators, which
are diagonal in �x ,y� , �x , py�, and �px ,y�. If the external trap-
ping potential Vext�x ,y� is more general and nonharmonic,
we can still write

H = Hx + Hy + V�x,y,�� �6.5�

but now with

V�x,y,�� = Vext�x,y� − 1
2 �1 + ��x2 − 1

2 �1 − ��y2 + g���x,y,���2.

�6.6�

The parameter � is then a free parameter associated with
algorithm, which we can choose to match the asymmetry of
Vext, or just set to zero. The crucial points is that, for a rotat-
ing trap, harmonic or not, the Hamiltonian has three opera-
tors diagonal in three separate spaces. By computing the den-
sity matrix of

T = Hx + Hy �6.7�

exactly via algorithm �3.14�, we have reduced the Hamil-
tonian to a two-operator problem. This is a tremendous sim-
plification. This simplification is not restricted to harmonic
traps, but holds equally for an arbitrary external potential.
The key point is that the rotating part of the Hamiltonian can
be diagonalized regardless of the choice of the confining po-
tential. When we diagonalize Hx+Hy, we generate an in-
verted harmonic potential in �6.6�, which must be compen-
sated by the external potential or the GP potential. In the
following we will present results only for �6.2�, but our al-
gorithm works in the general case of �6.6�. We will come
back to this point when we discuss overcritical rotation in the
next section.

Because implementing T is computational demanding, we
must choose a fourth-order algorithm with a minimal number
of T operators. Thus among the many forward algorithms
discovered so far �15–19�, we choose to implement only the
simplest algorithm, 4A,

����� = e−�1/6���V����e−�1/2���T

�e−�2/3���Ṽ���/2�e−�1/2���Te−�1/6���V�0���0� ,

�6.8�

with Ṽ given by

Ṽ = V +
��2

48
†V,�T,V�‡ . �6.9�

Despite the seeming complexity of T as defined by the
Hamiltonian �3.8�, we have remarkably

†V,�T,V�‡ = 
 �V

�x
2

+ 
 �V

�y
2

. �6.10�

Thus, the midpoint effective potential is

Ṽ���/2� = g�����/2��2 +
��2g2

48
�� � �����/2��2

�x
�2

+ � � �����/2��2

�y
�2	 . �6.11�

�For the more general case, V is given by �6.6�.� The partial
derivatives can be computed numerically �12� by use of finite
differences or FFT. Since the FFT derivative converges ex-
ponentially with grid size, the use of FFT derivative is pref-
erable when the system can be made periodic. In the case
with bound state wave functions, this can be done by extend-
ing the grid size so the the wave function is essentially zero
near the grid edge.

To implement this fourth-order algorithm, we first replace
���� /2� and ����� by ��0�. We will refer to this as algo-
rithm 4A00. Its convergence is shown in Fig. 2. We have
retained some first- and second-order results for comparison.
Aside from its abrupt instability at ���0.3, its convergence
is remarkably flat. All the results at ���0.3 differ only in
the fifth decimal place.

We can also improve the convergence by making the final
wave function ����� consistent with V����. The results for
iterating the W function once as described previously is de-
noted as 4A0W. By just iterating the W function once, we
extended the convergence out to ���0.5. Algorithm 4A00
and 4A0W can achieve the result of 2A0 at �� nearly 20 to
40 times times as large.

To fully implement the time-dependent factorization
scheme �6.8� and to remove the instability in 4A0W, we
evolve the midpoint wave function ���� /2� from ��0� by a
second order algorithm 2AW and iterate the final wave func-
tion ����� for consistency. We denote this algorithm as

FIG. 2. The convergence of fourth-order algorithms in comput-
ing the chemical potential of the Gross-Pitaevskii equation in a
rotating trap. Algorithms 4A00 �solid diamonds� and 4A0W
�circles� are unstable beyond ���0.3 and 0.5, respectively. Algo-
rithm 4AWW �solid circles� is stable and showed excellent fourth-
order convergence.
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4AWW. Its convergence is now smooth, stable and fourth
order as shown in Fig. 2.

As pointed out in Ref. �12�, when the eigenfunction con-
verges as

� = �0 + O���n� , �6.12�

the eigenvalue converges as

E = E0 + O���2n� . �6.13�

In Fig. 3, we compare the convergence of the GP ground
state energy

E =� �*�T + 1
2g���2��d2r/� ���2d2r . �6.14�

All the fitted lines are of the monomial form

E − E0 = C��n. �6.15�

Algorithms 1A and 1B0 yielded near-identical quadratic con-
vergence. Algorithm 2AW can be fitted with a fourth order
monomial as shown. The fit is not perfect because because
our W function is only an approximation. Algorithm 4A00
and 4A0W failed too abruptly to show a smooth trend, but
4AWW can indeed be fitted with an eighth-order monomial.

The computational effort required by each algorithm is
essentially that of evaluating the exact algorithm �3.14�,
which uses three 2D FFT. Since 1A, 1B0, and 2A0 all use
the exact algorithm once, the second-order algorithm 2A0 is
clearly superior. Algorithms 4A00 requires two evaluations
of the exact algorithm plus the gradient potential. The gradi-
ent potential, if done by FFT, requires two 2D FFT. Thus
algorithm 4A00 requires eight 2D FFT, which is 8 /3�3
times the effort of algorithm 2A0. Since algorithm 4A00
converges much better than 2A0 at time steps more than

three times as large, the class of 4A00 and 4A0W algorithm
is clearly more efficient. This efficiency is especially evident
if higher accuracy is required. The fully implemented algo-
rithms 4AWW use the second-order algorithm to evaluate
midpoint wave function and is therefore �4 time the effort
of 2A0. Looking at Fig. 2, algorithms 4AWW clearly con-
verge better than 2AW �2A0� even at time steps four times as
large. Note that the first- and second-order algorithms are
basically similar, whereas all fourth-order algorithm are
qualitatively distinct. The second-order algorithm is not an
order-of-magnitude better than a first-order algorithm,
whereas all fourth-order algorithms are an order-of-
magnitudes better than the second-order algorithm.

This advantage of fourth-order algorithms is cumulative.
For example, one can quickly evolve into the ground state by
use of large time steps. As stated earlier, the GP ground state
can be obtained at �=2. Using algorithm 4A0W at ��=0.5,
one can get there in four iterations. Algorithm 2A0 would
have taken 80 iterations at ���0.02.

To see how these comparisons work out in practice, we
give below some timing information. Since running time is
code and machine dependent, this should be viewed as
merely illustrative. The algorithms were programmed in For-
tran 90 and ran on a 1.2 GHz Pentium machine with 0.5 GB
of RAM. The IMSL 2D FFT is used. For the case of a
64�64 point mesh, each run of algorithms 1A, 1B0, 2A0,
1BW, and 2AW required 0.0130, 0.0135, 0.0138, 0.0173, and
0.0203 sec, respectively. �Timing is obtained by averaging
over 500 run of each algorithm.� Algorithms 1A, 1B0, and
2A0 are indeed comparable, but each self-consistency itera-
tion increases the time by �0.006 sec, which is an increase
of 40% for 2AW. The time for algorithm 4A00, 4A0W, and
4AWW are, respectively, 0.0394, 0.0459, and 0.0630 sec.
The time for algorithm 4A00 is approximately three times
that of 2A0 and the self-consistency iteration now accounts
for only an 16% increase. Algorithm 4AWW is slightly more
than four times that of 2A0. In the case of a 128�128 point
mesh, the timing for 2A0, 4A00, 4A0W, and 4AWW are,
respectively, 0.0568, 0.1669, 0.1916, and 0.2617 sec. The
ratio of timing remained similar. For three and four times the
effort, these fourth-order algorithms can converge at time
steps at least 20 times as large as second-order algorithms.
Moreover these are O�N� algorithms which scale with the
mesh size. When doing a three-dimensional �3D� N= �256�3

calculation, the required time would be thousands times
longer and the gain in using fourth-order algorithms would
be even more measurable.

By solving the density matrix of the rotation harmonic
oscillator �6.7� exactly, we have effected a tremendous sim-
plification which has allowed us to derive very compact
fourth-order algorithms with excellent large time-step con-
vergence. They are no more difficult to implement than
second-order algorithms. If we do not have the exact density
matrix, then we would have to approximate each occurrence
of e−�1/2���T in �6.8� to fourth order, resulting in a much more
complex algorithm.

However, by solving the rotating harmonic oscillator ex-
actly, the current algorithms also inherited its limitations. As
alluded to in Sec. III, the rotating harmonic trap becomes
unstable at �c=�1−�. Thus if we are to use the exact algo-

FIG. 3. The convergence of various algorithms in computing the
ground state energy of the GP equation. Both first-order results
showed near-identical quadratic convergence. The second-order re-
sult 2AW �asterisks� is fourth order and 4AWW �solid circles� is
eighth order. Results for 4A0W �circles� cannot be fitted because
instability sets in abruptly at ���0.5. Results for 4A00 is similar
with instability at ���0.3 and is not shown.
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rithm �3.14�, we must require ���c. However, it is known
�39,40� that for ��1/5 and g sufficiently large, the full GP
equation can support “overcritical” rotation in the interval
�1−�����1+�. For overcritical rotation, one must not
prematurely impose the limitation of the rotating harmonic
oscillator on the algorithm.

In light of our previous discussion, we now consider the
case of

Vext�x,y� = 1
2 �1 + ��x2 + 1

2 �1 − ��y2, �6.16�

and group the Hamiltonian as follows:

H = Hx + Hy + V�x,y,�� , �6.17�

where Hx and Hy are defined as before in �6.3� and �6.4�, and

V�x,y,�� = 1
2 �� − ��x2 − 1

2 �� − ��y2 + g���x,y,���2.

�6.18�

We thus divorce the deformation parameter � associated with
the algorithm, from the physical deformation parameter �
associated with the trapping potential. If we choose �=0, the
algorithm is stable up to �=1, above the physical critical
value of �c=�1−�. Moreover, since in the Thomas-Fermi
approximation the density profile follows the shape of the
potential, �6.18� indeed suggests that the inverted harmonic
potential − 1

2�y2 can be compensated by the GP potential at
sufficiently large g, making overcritical rotation possible.

VII. CONCLUDING SUMMARY

In this work we have derived a number of fourth-order
algorithms and demonstrate their fourth-order convergence
in solving the GP equation in a rotating, anisotropic har-
monic trap. These fourth-order algorithms, based on forward
factorization schemes, are the only class of factorization al-
gorithms possible for solving evolution equations with a dif-
fusion kernel. Our use of the time-dependent factorization
rule provided a systematic way of solving the nonlinear GP
equations and can be generalized to solve similar nonlinear
equation such as the Hartree-Fock and the Kohn-Sham equa-
tion �41,42�. These fourth-order algorithms are particularly
efficient in solving for the ground state by use of large time
steps. In constrast to other algorithms, generalizing these al-
gorithms to 3D is very transparent, one simply replaces 2D
FFT everywhere by 3D FFT. Our use of the exact algorithm,
which diagonalizes the rotating component of the Hamil-
tonian, is general and can applied to any external trapping
potential. This exact algorithm also provided insight for un-
derstanding overcritical rotation. Physical results obtained by
applying these algorithms will be presented elsewhere.
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